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Characteristics
Pb or Pb/Bi coolant

*550°C to 800°C outlet
temperature

eFast Spectrum
Multi-TRU recycle
«50-1200 MWe
«15-30 year core life
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nuclear energy systems

Intrinsic Features of Lead Alloy caafiors

« Low Neutron Absorption and Slowing Down Power

— Allow to open the lattice, increase coolant volume fraction absent a
neutronics penalty

— Facilitates natural circulation
 High Boiling Temperature at Atmospheric Pressure (~1700°C)
— Unpressurized primary (precludes loss of coolant accident initiator)

— Margins are available to employ passive safety — based on
thermo/structural feedbacks

— Potential to raise core outlet temperature (~800°C suitable for H,
production and other process heat missions)

 Non-vigorous reaction with air and water
— Potential to simplify heat transport circuits

— Potential to simplify refueling approaches




Electricity Production Mission
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o Sustainable electricity production using fissile self-sufficient closed fuel

cycles
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Rapid Growth
In Developing
Countries

EEU = Central & Eastern Europe; LAM = Latin America; MEA = Middle East & North Africa; AFR = Sub-
Suharan & Southern Africa; CPA - Centrally Planned Asia & China; PAS = Pacific OECD (Japan, Australia,
New-Zealand); SAS = South-East Asia; NAM — North America; WEU = Western Europe; PAU = Other Pacific

Asia; FSU = Former Soviet Union
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Ratio of hydrogen (H) to carbon (C) for global primary energy consumption since
1860 and projections for the future, expressed as a ratio of hydrogen to carbon
(H/C). SOURCE; Ausubel (1996) and Marchetti (1985).
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Established Market Features

— Extensive electricity grids
— Fuel cycle support infrastructures in place

— Large scale financing available
e Large Monolithic and Modular Concepts
— 1200 MWe Monolithic (economy of scale strategy)

— ~300 MWe modular (economy of just-in-time capacity additions)
« Fissile self sufficient or net TRU burners

« Targeted primarily to electricity markets (regulated or deregulated) in
Industrialized countries

 Financial conditions may require high interest/quick return on capital
(modular plants)
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« Small or sparse grids or developing countries lacking an indigenous
fuel cycle infrastructure and tight capital availability

— ~50-150MWe “Battery” (Economy of Mass Production)

e De-rated power density (LWR range) (natural circulation
cooled)

 Passive load follow/passive safety (no safety functions for
BOP)

 Long refueling interval: 15-20y with an internal conversion
ratio ~1.0

e Limited Staffing
 Transportable
— Factory built turnkey plant
— Rapid installation & revenue generation

— Cassette or entire module refueling-no refueling
equipment on site
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 Regional fuel cycle centers offering front & back end services with

operation under International Nonproliferation Oversight
— No Interest (or capacity) to emplace a full fuel cycle infrastructure

— Nonproliferation advantages due to localized international

oversight of bulk fuel and waste management
 Resulting institutional Issues and paradigm shift

— Supplier assumes risk of supplying large quantities of a

commodity product; client risk is reduced

— International consensus needed for acceptability of regional fuel

cycle centers —which also include waste management




Extended Energy Products Mission
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Higher temperature (~800°C) operation for hydrogen manufacture

Desalinization bottoming cycles for potable water
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Reactor Temperature 725°C - 1200°C

Links clean sustainable nuclear resource to clean emission free fuel (H.,)
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Symbiotic Fuel Cycles
— Fast burner reactors for fission consumption of TRU from open

cycle thermal reactors
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Power Plant Innovations Laenhon v
Heat Transport

—Natural circulation at full power (open lattice, low power density)

—Lift pump

—Direct contact heat exchange

—Direct contract steam generation

—Copper or liguid metal bonded steam generation design
*Plant Control

—Passive load following:

«Zero burnup control swing, internal conversion ratio of one

—Feedbacks innately adjust power to heat request from BOP
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Energy Converters
—Supercritical CO, Brayton Cycle
—Supercritical Rankine Cycle

Steam turbine: 55 stages / 250 MW
Sm Mitsubishi Heavy Industries Ltd, Japan (with casing)

‘1- Helium turbine: 17 stages / 333 MW (167 MW)
X.L.Yan, L.M. Lidsky (MIT) (without casing)

Supercritical CO, turbine: 4 stages / 450 MW (300 MW )

(without casing)
e Presented at IOONE-10 Anril 14-18_ 2002
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Fuel Cycle Innovations

« Advanced aqueous or pyroprocess recycle technology with intrinsic
nonproliferation features

— Produces co-mixed Pu+MA feedstock (no separated Pu)
— Incomplete fission product separation
 Fuel Cycle Support Facilities Options
— Co-located
— Regional
 Multiple Fuel Options

— Fuel types TRU/U/Oxide, TRU/U/Nitride, TRU/U/Alloy, TRU Alloy,
MA Alloy

— Remote refabrication technology depends on fuel type
« Simplified pelletization (oxide, nitride)
 Vibrocompaction (oxide, nitride)

* Injection casting (metal)
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Structures and Cladding: Corrosion control, radiation stability, and fuel
compatibility

— Ferritic-martensitic steels (550°C concepts)

— Ferritic-martensitic ODS (550°C + concepts)

— Si Cor Zr Ncomposites or coatings (800°C concepts)

— Vanadium or other refractory metal alloys (800°C concepts)

Heat Exchangers : Tube Interfaces

Pb or Pb-Bi/steam and HBr + Steam / Steam
/| SC CO, /| CO,
/ He /| He
/ Molten Salt / Molten Salt

Fabricability of structural materials
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« Nitride Fuel: High potential for lead alloy concept mlssions
— Compatible with Pb and good to high temperature
— High density; high thermal conductivity to enable passive safety
 Required R&D
— N15 enrichment and recovery during recycle
— Pyro recycle/in-situ front end dissolution, and back end re-
conversion
— Vibropac remote refabrication
— Fuel/Clad/Coolant Performance Testing
 Properties: unirradiated; irradiated
« Normal & operational transient testing
e Upset condition testing
« Severe event phenomenology testing




Enabling R&D-Energy Gt
conversion

« Supercritical CO, Brayton Cycle

— Thermodynamic optimization

— Recuperator design, IHX design

— Turbine design
« Ca-Br Water Cracking

— Materials

— Casupport

— Properties of reactants

— Rate constants

— Flowsheet/bench scale/prototype
 Desalinization Bottoming Cycle

— Overall BOP heat balance

— Optimized hybrid cycles
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 Fast Spectrum, closed TRU-Multi recycle fuel cycles
— Operate as fissile self sufficient
or
— Operate as TRU burners in a symbiotic nuclear energy park
« Power Plants Display
— Range of sizes 1200 MWe, 300 MWe, 50-150MWe
— Extensive innovation in
« Heat transport
« Energy conversion
« Special emphasis on expanding client base:
— Developing country markets
— New energy products (H,, Water)




Summary B gteer
« Institutional Innovations will be Needed for the Battery Concepts |

— Economy of mass production
— Regional fuel cycle facilities
 Extensive R&D will be required

— Fuel/clad/coolant combinations currently have only sparse
database

— New recyclel/refab required for new fuel (nitride, fertile-free for
burners)

— New energy converters require development
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Ca-Br Cycle
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e 4-Step Thermochemical Cycle

Temp ("C) Heat Flow Purpose
1. Ca Br2 (s)+ H20 (g) ® CaO(s) + 2ZHBr(g) TOO-750 n Crack water

with Ca Br?
and heat

2. CaO(s)+Br2(g)® CaBra(s)+ 12 02(g) S500-600 ~ neutral Regenerate
CaBr2 using
Bro

3. Fe3O4(s)+ 8H Br(g) ® 3Fe Br2(s) + 4H20(g) +Br2(g) 200-300 out Regenerate
Br2 using rust

4. 3FeBr2(s) +4H20(g) ® Fe304(s) + 6HBr{g) + H2(g)  550-600 In Regenerate

rust using
water & heat
. H2 released in Step 4: O2 released in Step 2
. Heat Supplied at ~725°C in Step 1 and at ~373%C 1n Step 4
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